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Abstract. Modern simulation scenarios require real-time or many query responses from
a simulation model. This is the driving force for increased efforts in model order reduction
for high dimensional dynamical systems or partial differential equations. This demand for
fast simulation models is even more critical for parametrized problems. Several snapshot-
based methods for basis construction exist for parametrized model order reduction, e.g.
proper orthogonal decomposition (POD) or reduced basis (RB) methods. An often faced
problem is that the produced reduced models for a given accuracy tolerance are still of
too high dimension. This is especially the case for evolution problems where the model
shows high variability during time evolution. We will present an approach to gain control
over the online complexity of a reduced model by an adaptive time domain partitioning.
Thereby we can prescribe simultaneously a desired error tolerance and a limiting size of
the dimension of the reduced model. This leads to fast and accurate reduced models. The
method will be applied to an advection problem.

1 INTRODUCTION

Simulations of complex parametrized evolution problems often require high dimen-
sional discrete models due to the need of a high space resolution of the discretization. As
a consequence these models are not suited for multi-query tasks like parameter optimiza-
tion, statistical analysis or inverse problems because the calculation of solutions for many
different parameters can take an excessive amount of time. This is the motivation for the
application and the development of model reduction techniques for parametrized models.
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Projection based model reduction techniques are widely used, such as proper orthogonal
decomposition [11], Krylov-subspace [1] or reduced basis methods [9]. In these methods
the discrete operators are projected onto a reduced space so that the problem can be
solved rapidly in this lower dimensional space.

However, if the problem depends on many parameters or if the solution shows a high
variability with the parameters, a relatively high dimensional reduced space is needed in
order to be able to represent all possible solution variations well, which leads to long on-
line simulation times. This effect is even considerably increased when treating evolution
problems with significant solution variations in time. These difficulties play a role partic-
ularly in case of real time applications, where full control over the online simulation time
is required. Another aspect is the fact that projection based model reduction techniques
generate small but full matrices while common discretization techniques (as FEM) lead to
large but sparse matrices. It is even possible that calculating a solution with the reduced
model is more time consuming than the simulation of the original model.

Consequently, the goal is to provide methods for generating reduced models being si-
multaneously accurate (concerning the approximation error) and performant (concerning
the online simulation time) independent of the complexity in parameters and the complex-
ity in the time evolution of the original problem. There exist approaches to control the
online complexity of reduced models in parameter space in [3] and [5]. However, the same
approximation space is used here over the whole time domain. We propose to generate a
segmentation of the time interval into several smaller intervals and to construct a reduced
approximation space on each of the time intervals. By an adaptive partitioning of the time
domain we can even guarantee the accuracy of the reduced model with respect to a fixed
error tolerance while limiting simultaneously the dimension of the approximation space
per interval. Although the method can be applied to various projection based reduction
techniques, we will put the focus here on the reduced basis (RB) method. An introduction
to the RB method applied to time dependent problems can be found in [4],[9] and [6].
In literature we did not find similar approaches for a partitioning of the time domain in
model reduction. Yet, in [2] an adaptive approach of generating collateral reduced bases
on different time domains for the use in empirical interpolation of nonlinear operators was
applied. An adaptive choice of the size of the reduced space at every time step during
online simulation was realized in [7]. This approach optimizes the number of basis vectors
used for the approximation of the solution but it does not give full control over the online
complexity by strictly limiting the size of the reduced basis.

The current presentation is structured as follows. In Section 2 we introduce the gen-
eral evolution equation and some notations. In Section 3 we give a brief introduction
to the reduced basis method as model reduction technique of choice. In Section 4 the
time domain partitioning approach is presented and a possible algorithm for adaptively
partitioning the time domain is developed. The application of the method to an advection
problem can be found in Section 5 followed by conclusions and an outlook in Section 6.
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2 PROBLEM SETTING

We consider the general linear parameter dependent evolution equation

∂tu(·, t;µ) = L(t;µ)u(·, t;µ) + b(·, t;µ) in Ω (1)

u(·, 0;µ) = u0(·;µ) in Ω (2)

with solutions u(·, t) from a Hilbert space X for all t ∈ [θ, T ] and suitable boundary
conditions. The parameter vector µ stems from a possible set of parameters P ⊆ R

p. After
discretization in space (by finite element or finite volume techniques, for example) and a
discretization of the time interval [θ, T ] by K + 1 equidistant time instants tk := k∆t+ θ
and a first order time integration we obtain the discrete evolution scheme

(

Id−∆tLh,Im(t
k;µ)

)

uk+1
h (µ) =

(

Id+∆tLh,Ex(t
k;µ)

)

uk
h(µ) + ∆tbh(t

k;µ), (3)

u0
h(µ) = P

(

u0(x;µ)
)

, (4)

producing spatial solutions uk
h(µ) = uh(t

k;µ) in a discrete function space Xh ⊂ X with
dim(Xh) = H at time step k = 0, . . . , K, where P : X → Xh denotes the L2 orthogonal
projection operator. In order to obtain a very general formulation for the discrete evolu-
tion scheme, we included operator splitting of the operator L into an implicit part Lh,Im

and an explicit part Lh,Ex. For details we refer to [6].
For the separation of the procedure into a preparing offline phase and a rapid online sim-
ulation phase we need the operators Lh,Im and Lh,Ex as well as the right hand side b and
the initial conditions to be parameter separable:

Lh,Im(t
k,µ) =

QLIm
∑

q=1

Θq
LIm

(tk;µ)Lq
h,Im bh(t

k;µ) =

Qb
∑

q=1

Θq
b(t

k;µ)bq (5)

Lh,Ex(t
k,µ) =

QLEx
∑

q=1

Θq
LEx

(tk;µ)Lq
h,Ex u0(µ) =

Qu0
∑

q=1

Θq
u0
(µ)uq

0. (6)

The coefficients Θq

[·](t
k; ·) : P → R can be evaluated rapidly in the online phase.

3 REDUCED BASIS METHOD

Although the technique of time domain partitioning in the generation of reduced
parametrized models presented here can also be applied to other model reduction meth-
ods, we will focus here on the application of the reduced basis method to illustrate and
explain the procedures.
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3.1 Reduced evolution scheme

In RB methods the reduced basis ΦN consisting of basis vectors ϕn is constructed
by solution snapshots corresponding to several parameters. The basis vectors ϕn, n =
1, . . . , N span the space XN = span(ΦN) = span{ϕ1, ..., ϕN} ⊆ Xh with the inner product
inherited from X. We assume that the basis vectors ϕn are orthonormal 〈ϕn, ϕm〉 = δnm
for n,m = 1, ..., N . For the solution in the reduced space we start with the ansatz

uk
N(µ) =

N
∑

n=1

akn(µ)ϕn(x). (7)

By a Galerkin projection of (3) onto XN using (7) we obtain the reduced evolution scheme
(

Id−∆tLIm(t
k+1;µ)

)

ak+1 =
(

Id+∆tLEx(t
k;µ)

)

ak +∆tb(tk;µ) (8)

a0n =
〈

u0
h(µ), ϕn

〉

∀n = 1, ..., N (9)

with ak = (ak1, ..., a
k
N )

T . The reduced operators LEx(t
k;µ),LIm(t

k;µ) in equation (8) are
Gramian-like matrices with entries (LEx)n,m (tk;µ) =

〈

Lh,Ex(t
k;µ)ϕm, ϕn

〉

and

(LIm)n,m (tk;µ) =
〈

Lh,Im(t
k;µ)ϕm, ϕn

〉

respectively for n,m = 1, ..., N . The projected

right hand side vector b(tk;µ) has components (b)m (tk;µ) =
〈

b(tk;µ), ϕm

〉

for m =
1, ..., N . All quantities and operators in the reduced evolution scheme (8) are of low
dimension N and are independent of the original discrete space dimension H.

In order to circumvent conducting a Galerkin projection for every new parameter we
use the property of parameter separability of the operators. Thereby, we can calculate in
an offline phase the operator components projection

(Lq
Ex)n,m =

〈

Lq
h,Exϕm, ϕn

〉

(bq)m = 〈bq, ϕm〉 (10)

(Lq
Im)n,m =

〈

Lq
h,Imϕm, ϕn

〉 (

a0,q
)

m
=

〈

uq
0,h, ϕm

〉

(11)

where Lq
Ex,L

q
Im ∈ R

N×N and bq ∈ R
N . When a new parameter µ for simulation is set, we

only have to evaluate the values of the coefficients Θq

[·] and assemble the reduced operators:

LEx(t
k,µ) =

QLEx
∑

q=1

Θq
LEx

(tk,µ)Lq
Ex b(tk,µ) =

Qb
∑

q=1

Θq
b(t

k,µ)bq (12)

LIm(t
k,µ) =

QLIm
∑

q=1

Θq
LIm

(tk,µ)Lq
Im a0(µ) =

Qu0
∑

q=1

Θq
u0(µ)a

0,q (13)

3.2 A-posteriori error estimation

Reduced basis methods provide a-posteriori error estimators bounding the approxi-
mation error

∥

∥uk
h(µ)− uk

N(µ)
∥

∥ ≤ ∆k(µ) between the reduced solution and the high-
dimensional discrete solution for all k = 0, . . . , K. During the online simulation such an
upper bound for the approximation error can rapidly be calculated [4, 10, 6].
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3.3 Reduced basis generation by POD-Greedy algorithm

In reduced basis methods a common approach to build up a reduced basis space is
the use of the POD-Greedy algorithm in time dependent cases [3, 8, 6]. In every loop
of the POD-Greedy algorithm, we search on a training set Mtrain of parameters the one
parameter for which the reduced solution produces the highest estimated error. Next, a
high dimensional detailed solution is calculated for this parameter. A POD over the time
sequence of projection errors is performed and the first mode (or another fixed number of
k modes) is added as a new basis vector to the existing reduced basis. This procedure is
repeated until the maximum error estimator falls beneath a given tolerance.

4 TIME DOMAIN PARTITIONING

The basic idea is to construct a segmentation of the time domain into several intervals
τi and to create reduced bases for each of these time intervals. In analogy to the parameter
domain partitioning [3, 5] these specialized reduced bases on the time intervals require
less basis vectors to approximate the solutions with a given error tolerance. An adaptive
partitioning of the time domain allows to fix the maximum number of basis vectors per
time interval Nmax while keeping the overall approximation error below the tolerance εtol.

We assume that the whole time domain [θ, T ] is subdivided into Υ time intervals

τ1, ..., τΥ with τ1 := [θ, tκ(1)], τ2 := [tκ(1), tκ(2)], ... τΥ := [tκ(Υ−1), T ] so that [θ, T ] =
Υ
⋃

i=1

τi.

We define that κ(i) is the index of the time step at the joint border between interval i
and i+ 1 so that τi ∩ τi+1 = tκ(i). tκ(0) is defined to be θ.

For every time domain interval τi, i = 1, ...,Υ we assume to have a reduced basis
Φi = {ϕi,1, . . . , ϕi,Ni

} of size Ni which spans the reduced solution space XNi
= span(Φi)

for this time interval. We approximate the solution in this time interval τi using the
appropriate reduced basis Φi of the segment in the ansatz

uk
Ni
(µ) =

Ni
∑

n=1

akn,i(µ)ϕn,i ∈ XNi
. (14)

In an offline phase the reduced bases for every time interval are generated by starting
the POD-Greedy early stopping algorithm (see Algorithm 1) on every part of the time
interval. As we want to generate a basis representing well the solution variability on their
time interval, we only consider the error produced on the actual domain for the algorithm.
The reduced operator components are calculated according to (11) for every interval. In
the online simulation phase the reduced evolution scheme (8) is conducted on every time

interval. In order to obtain the “initial coefficients” a
κ(i−1)
i at the first time step of a new

time interval we perform an orthogonal projection of the solution at the last time step of
the previous interval u

κ(i)
Ni−1

onto the reduced space XNi
of the current interval:

〈

u
κ(i)
Ni−1

(µ)− u
κ(i)
Ni

(µ), ϕm,i

〉

= 0 (15)
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for all m = 1, . . . , Ni. With the ansatz (14) in (15) and assuming orthonormal bases we

obtain a
κ(i)
i (µ) = T (i−1,i)a

κ(i)
i−1(µ) with (T (i−1,i))m,n = 〈ϕm,i, ϕn,i−1〉 for n = 1, . . . , Ni−1

and m = 1, . . . , Ni and ak
i =

(

ak1,i, . . . , a
k
Ni,i

)T
. The projection error ∆pi−1,i can be

calculated rapidly online by

∆pi,i+1(µ) =
∥

∥

∥
u
κ(i)
Ni

(µ)− u
κ(i)
Ni+1

(µ)
∥

∥

∥

2
=

√

(

a
κ(i)
i (µ)

)T

a
κ(i)
i (µ)−

(

a
κ(i)
i+1(µ)

)T

a
κ(i)
i+1(µ).

(16)
This can be used to derive a-posteriori error estimators for our enhanced scheme.

Proposition 4.1. Let be rki (µ) = uk
h(µ) − uk

Ni
(µ) the approximation error in the time

interval τi at time step k with κ(i − 1) < k ≤ κ(i). If assuming that ||r01(µ)|| = 0 and

that the implicit operator Lh,Im is negative definite, then the error can be bounded by

||rki (µ)|| ≤ ∆k(µ) with

∆k(µ) =
k

∑

j=1

Ck−j(||Resji (µ)||+ ||Res
(j−1)
proj (µ)||). (17)

C > 0 is a constant depending on the explicit operator Lh,Ex. The residual is defined as

Resk+1
i (µ) =

(

Id−∆tLh,Im(t
k+1;µ)

)

uk+1
Ni

(µ)

−
(

Id+∆tLh,Ex(t
k;µ)

)

uk
Ni
(µ)−∆tbkh(µ)

(18)

and i is chosen appropriately to the according time step κ(i−1) < k ≤ κ(i). The projection

residual Resjproj is defined as Reskproj(µ) =
Υ−1
∑

i=1

δκ(i)k∆pi,i+1(µ) where δκ(i)k is supposed to

be the Kronecker delta.

Proof. In general we can estimate the norm ||rki (µ)|| of the approximation error by putting
the definition of the approximation error rk(µ)i = uk

h(µ)− uk
Ni
(µ) in (3), rearranging the

terms and assuming ||Id−∆tLh,Im(t
k+1;µ)||−1 ≤ 1 due to the negative definiteness and

0 < ||Id+∆tLh,Ex(t
k;µ)|| ≤ C to obtain

||rk+1
i (µ)|| ≤ C||rki ||+ ||Resk+1

i (µ)||. (19)

For details of this deduction we refer to [6]. However, if k is the first time step of an
interval (k = κ(i) for any i = 1, ...,Υ− 1) we do not know the value for the “initial error”
||rki ||. But we can estimate its value by

||rki (µ)|| = ||uk
h(µ)− uk

Ni
(µ)|| = ||uk

h(µ)− uk
Ni−1

(µ) + uk
Ni−1

(µ)− uk
Ni
(µ)||

≤ ||uk
h(µ)− uk

Ni−1
(µ)||+ ||uk

Ni−1
(µ)− uk

Ni
(µ)|| ≤ ||rki−1(µ)||+∆pi,i+1(µ).

(20)

Calculating ||rki (µ)|| recursively with (19) and (20) leads to (17).
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4.1 Adaptive time domain partitioning

When using a fixed partitioning of the time domain we obtain a more accurate and
faster model. We will now present an adaptive way for a partitioning of the time domain
guaranteeing an overall approximation error lower than εtol while limiting simultaneously
the basis size to Nmax. The algorithm to this adaptive approach is described in Algorithm
2. The overall goal of this algorithm is to generate a reduced model with the following
properties:

• It produces a uniform error growth over the whole time during online simulations.

• It has limited online complexity. (The basis size on each interval is limited a priori.)

• The maximum approximation error stays below a given error tolerance.

To estimate the approximation error we use the error estimator for general evolution
equations from Proposition 4.1. As it grows monotonically, the maximum error estimator
value is found at the last time step and this value ∆K(µ) should be kept below a given
global error tolerance εtol,global. In order to have an approximately uniform growth of
the error on the whole time domain, we fix the error tolerance for an interval τi to
εtol,i = εtol,global

tκ(i)−tκ(i−1)

T
. We start the basis generation using the POD-Greedy algorithm

on an interval. As soon as the maximum size Nmax of the reduced basis is reached, the
POD-Greedy algorithm is stopped and a refinement of the time domain is triggered. In
the present work, each interval marked for refinement is divided into two intervals of equal
size. After a segmentation of the time interval we restart the POD-Greedy algorithm on
every interval while fixing the error tolerance on the new time intervals to εtol,i, fixing the
maximum basis size to Nmax and adapting the indices of the bases and intervals. This
procedure is conducted until obtaining a segmentation of the time domain where on every
interval exists a reduced basis with less then Nmax basis vectors and a training error lower
than εtol,i.

EarlyStoppingGreedy(Φ0,Mtrain, εtol,Mval, ρtol, Nmax)
1 Φ := Φ0

2 repeat

3 µ∗ := argmaxµ∈Mtrain
∆(µ,Φ)

4 if ∆(µ∗) > εtol
5 then

6 ϕ := ONBasisExt(u(µ∗),Φ)
7 Φ := Φ ∪ {ϕ}
8 ε := maxµ∈Mtrain

∆(µ,Φ)
9 ρ := maxµ∈Mval

∆(µ,Φ)/ε
10 until ε ≤ εtol or ρ ≥ ρtol or |Φ| ≥ Nmax

11 return Φ, ε
Algorithm 1: The early-stopping (POD-)greedy search algorithm, for ρtol = ∞, Nmax = ∞

recovering the standard (POD-)greedy procedure.
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AdaptiveTimePartition(T0, εtol,global, Nmax)
1 T := T0,Φi := ∅ for τi ∈ T
2 repeat

3 Υ = card(T )
4 for i = 1, ...Υ with Φi = ∅
5 do Φi := InitBasis(i)
6 Mtrain,i := Mtrain(i)
7 ηi := 0
8 εtol,i := εtol,global · (t

κ(i+1) − tκ(i))/(T − θ)
9 [Φi, εi] := EarlyStoppingGreedy(Φi,Mtrain,i, εtol,i, ∅,∞, Nmax)
10 if εi > εtol,i
11 then ηi := 1
12 ηmax := maxi=1,...,Υ ηi
13 if ηmax > 0
14 then [T ,Φ] := RefineTPart(T ,Φ,η,Mval)
15 until ηmax = 0
16 return T , {Φi, εi}

Υ
i=1

Algorithm 2: The adaptive time partition algorithm generates automatically a partitioning

of the time domain and generates a reduced basis on each domain having less than Nmax basis

vectors and an approximation error on the training set Mtrain,i lower than εtol,i. T = {τi}
Υ
i=1 is

the set of all time intervals with the initial set T0 and ηi marks the intervals which have to be

refined by a refinement algorithm.

5 EXPERIMENTS

5.1 The advection model

In the experiments we consider the advection problem

∂tu(µ) = −∇ · (v(µ)u(µ)) in Ω× [0, T ] (21)

with Ω := [0, 2] × [0, 1], θ = 0 and T = 1. We assume suitable initial conditions u(µ) =
u0(µ) for t = 0. Furthermore, Dirichlet boundary conditions u(µ) = udir on Γdir × [0, T ]
and Neumann boundary conditions ∇u(µ) ·n = uneu on Γneu × [0, T ] are prescribed. The
velocity v is supposed to be a divergence free parameter and time dependent velocity

field of the form v(x, t;µ) =

(

µ(1− t) · 5(1− x2
2)

−0.5(1− t)(4− x2
1)

)

with x = (x1, x2)
T ∈ Ω. This

can be discretized with cell-wise constant functions and a Finite Volume scheme using
an Engquist–Osher flux, which results in a corresponding discretization space Xh and
discretization operators Lh,Im and Lh,Ex as well as in a discrete right hand side bh for
including the boundary conditions. We chose a space discretization into 64× 32 intervals
and a triangular grid leading to 4096 degrees of freedom. For satisfying the CFL conditions
we discretized time into 512 time steps. Here, we chose a pure explicit discretization
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scheme with LIm = 0. Solutions are illustrated in Figure 1. As the control of the
parameter complexity is not the issue here we restrained our model to be dependent of
only one parameter. (This parameter controls the strength of the velocity field in x-
direction.) In case of models depending on many parameters and in case of high solution
variability with the parameter changes, the adaptive methods from [5] can be applied.

a)

b)

Figure 1: Solutions to the advection problems with a) µ = 0 and b) µ = 1 at time instants t = 0, t = 0.3
and t = 1. Obviously, the solutions varies considerably with time.

5.2 RB Model reduction with time domain partitioning

adaptation Υ ø-dim(RB) ø-online time[s] max. error offline time[h]

- 1 84.00 0.7 9.87 · 10−3 0.84
yes 7 33.63 0.61 7.85 · 10−3 2.10
no 7 34.31 0.61 9.32 · 10−3 0.70
no 64 24.61 0.61 6.28 · 10−3 5.08
no 128 23.43 0.64 7.36 · 10−3 12.13

Table 1: Comparison of average reduced basis sizes, offline time, average run-times and maximum error
estimates for non-adaptive and adaptive runs with different fineness of the time interval partition. The
average online run-times and maximum errors are obtained from 20 simulations with randomly selected
parameters µ.

We generated reduced basis spaces using a POD-Greedy algorithm in three different
ways: without T-partitioning, on predefined equally sized subdivisions into 7, 64 and 128
intervals of the time domain and with the adaptive approach from Section 4.1 limiting
the maximum number of reduced basis functions by Nmax = 45. The desired error tol-
erance was set to εtol,global = 10−2. Online simulations were performed for a set of 20
randomly chosen parameters using all previously generated models. Table 1 compares the
reduced basis sizes averaged over the sub-intervals, the average online simulation time,
the maximum estimated error during online simulations and the offline time consumed for
the basis generation. We observe that a predefined subdivision into seven sub-intervals

9
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already leads to a significant reduction of the reduced basis sizes by a factor of 2.5. It is
noteworthy, that even the offline time is slightly reduced in this case due to the polynomial
complexity of the basis generation w.r.t. the number of basis functions.

The bases on the very fine divisions into 64 and 128 intervals (meaning respectively 8
and 4 time-steps per interval) are practically of the same average size. Consequently, these
can be considered as bases of minimal possible basis size per interval representing the limit
of what we are able to reach when using the T-partition approach alone. We need this
minimal basis size per interval to cover the parameter variability of the solution. Table 1
also shows, that the adaptive basis generation approach produces only slightly larger
reduced bases (ø dim(RB) = 33.63) than the “minimal possible bases” (ø dim(RB) ∼ 25).
The same fact is also illustrated in Figure 2b where the reduced bases dimensions on the
sub-intervals are shown. The adaptively generated basis envelops closely the minimal
possible basis sizes. Both models produce the largest reduced spaces near the point
of highest solution variation around t = 0.5. The fact that the adaptively generated
subdivision of the time domain is very close to the optimum is also confirmed by Figure 2a,
which shows the estimated error evolution over time for different reduced models. First,
we see that the error grows almost uniformly over the whole time domain as desired. The
error evolution of the adaptively generated T-partition model is very close to the maximal
feasible error evolution by a very small refinement into 128 partitions. Furthermore, we
observe that the projection error between the intervals is non-negligible, but it diminishes
for smaller intervals.

Figure 2: Comparison of models with non-adaptively and adaptively generated T-partition bases and
different fineness of the partitions: a) Illustration of the time-evolution of the maximum error estimator
over a set of 20 randomly chosen parameters. b) Illustration of reduced basis sizes on time intervals.

We stated that it was possible to generate fast and accurate reduced models using the
T-partition approach, meaning that the approximation error as well as the reduced basis
dimension are simultaneously controllable. In order to show this we generated several
reduced models with different demands on the error tolerance εtol,global at a predefined
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basis size constraint Nmax = 40 using the adaptive T-partition approach. For comparison
we created reduced models without T-partitioning. We calculated for a validation set
of 25 randomly chosen parameters the average simulation time as well as the maximum
estimated approximation error. The results are illustrated in Figure 3. We observe the
average simulation time rises for the model without adaptive T-partitioning. This is due
to the fact that we need higher dimensional reduced models to meet the accuracy require-
ments. Yet, when using the adaptive T-partition approach we can limit the maximum
number of basis vectors per interval (almost) independently of the error tolerance. Con-
sequently, when the demand to the error tolerance is augmented the average simulation
time can be kept almost constant and we obtain fast and accurate models.

10
−3

10
−2

10
−1

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
Approximation error vs. average simulation time

maximum estimated error

av
er

ag
e 

si
m

ul
at

io
n 

tim
e 

in
 s

ec
.

 

 

no T−partition
adaptive T−partition Nmax40

Figure 3: The average simulation time plotted over the maximal error estimator over a randomly chosen
test set of 25 parameters using reduced models with and without T-partitioning.

6 CONCLUSION AND OUTLOOK

With the time domain partitioning approach we presented a generic method for treat-
ing model reduction of evolution problems and guaranteeing simultaneously online time
efficiency and accuracy. This is realized by an adaptive partitioning of the time domain
into several intervals and creating specialised reduced bases with limited size on each
of the intervals. We showed in experiments with an advection problem dependent on
one parameter, that applying the method leads to a considerable improvement of the
approximation error while the online simulation time is kept on a low level.

As this method produces a non-negligible projection error between the intervals we
see room for improvement. In case of problems with complex parameter dependency, it
is probable that the T-partition approach does not have enough effect for a considerable
improvement of the approximation error. However, this problem should be solved by
combining the T-partition approach with the P-partition approach from [5].
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